# Preparation and Magnetic Properties of the FeV<sub>2</sub>O<sub>4</sub>-Fe<sub>3</sub>O<sub>4</sub> System

MASATAKA WAKIHARA, YOSHIO SHIMIZU\*, AND TAKASHI KATSURA

Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan

Received December 31, 1970

A series of spinels having stoichiometric composition in the Fe<sub>3</sub>O<sub>4</sub>-FeV<sub>2</sub>O<sub>4</sub> system has been prepared at 1500°K under controlled CO<sub>2</sub>-H<sub>2</sub> atmospheres. The relationship between lattice parameter and composition of the spinel solid solution system showed a significant deviation from Vegard's law, and the Curie temperature varied with composition almost linearly except for the composition in the vicinity of FeV<sub>2</sub>O<sub>4</sub>. A minimum value of saturation moment, approximately 0.04  $\mu_B$  per formula unit, was observed at the composition Fe<sub>1.8</sub>V<sub>1.2</sub>O<sub>4</sub>. Saturation magnetization was reasonably explained by assuming the cation distribution as Fe<sup>3+</sup>(Fe<sup>2+</sup>Fe<sup>3+</sup><sub>µ</sub>V<sup>3+</sup><sub>µ</sub>)O<sub>4</sub> for the Fe<sub>2</sub>VO<sub>4</sub>-Fe<sub>3</sub>O<sub>4</sub> solid solution, and Fe<sup>3+</sup><sub>µ</sub>Fe<sup>2+</sup><sub>µ</sub>(Fe<sup>2+</sup><sub>µ</sub>V<sup>3+</sup><sub>2-λ</sub>)O<sub>4</sub> for the FeV<sub>2</sub>O<sub>4</sub>-Fe<sub>2</sub>VO<sub>4</sub>, where both  $\mu$  and  $\lambda$  change from 0 to 1.

#### Introduction

The solid solution system of  $FeV_2O_4$ -Fe<sub>3</sub>O<sub>4</sub> has been studied by several investigators (1-3). Since  $FeV_2O_4$  and  $Fe_3O_4$  have a normal (4) and an inverse (5) spinel structure, respectively, the  $FeV_2O_4$ -Fe<sub>3</sub>O<sub>4</sub> system might show interesting magnetic properties. The magnetic properties of  $FeV_2O_4$  and  $Fe_2VO_4$ were studied by Wold et al. (6). They reported a Curie point for FeV<sub>2</sub>O<sub>4</sub> of 190°K and a saturation moment at 4.2°K of 1.95  $\mu_B$  per formula unit; those for Fe<sub>2</sub>VO<sub>4</sub> are 440°K and 0.72  $\mu_{\rm B}$ , respectively. Recently, the ionic configuration in  $Fe_2VO_4$  was proposed to be  $Fe^{3+}(Fe^{2+}V^{3+})O_4$  by Bernier and Poix (7) on the basis of their anion-cation distance calculation method and studies of various magnetic properties. Magnetic and electric properties of the spinel solid solution  $\operatorname{Fe}_{1+\lambda}V_{2-\lambda}O_4$   $(0 \leq \lambda \leq 1)$  were studied by Rogers et al. (8). The Mössbauer spectra of this solid solution were measured by Rossiter (9) and cation distributions of  $Fe^{2+}(Fe^{3+}_{\lambda}V^{3+}_{2-\lambda})O_4$  $(0 \leq \lambda \leq 1)$  were proposed for this system.

The purpose of the present study was to prepare the stoichiometric spinel solid solution of  $FeV_2O_4$ - $Fe_3O_4$  system under controlled  $CO_2$ -H<sub>2</sub> atmospheres at 1500°K and to investigate the lattice parameters and magnetic properties of the system for the temperature range from 77°K (liquid nitrogen temperature) to 860°K.

\* Department of Physics, Faculty of Engineering, Meiji University, Ikuta, Kawasaki, Japan.

## Experimental

## Sample Preparation

 $Fe_2O_3$  and  $V_2O_5$  were used for preparing the solid solution  $Fe_{1+2x}V_{2-2x}O_4$  ( $0 \le x \le 1$ ).  $V_2O_5$  was obtained by decomposition of ammonium meta vanadate in air at 450°C. V<sub>2</sub>O<sub>5</sub> and Fe<sub>2</sub>O<sub>3</sub>, predried at 700°C, were thoroughly mixed in a desired proportion, loosely pressed into a small-size platinum crucible, and heated at 650°C in an atmosphere of a mixed gas of  $CO_2/H_2 = 1$  for 20 min. An error in the atomic ratio of V/Fe in a mixture was estimated to be within  $\pm 0.1$  %. The prepared sample was a mixture of reduced forms of vanadium and iron oxides. The grinding, pressing, and heating were repeated to obtain an uniform mixture. The mixed oxide sample was removed from the crucible and suspended in a vertical tube-quenching furnace with a thin, platinum-40 % rhodium wire; here it was heated for 10–18 hr at  $1500 \pm 3^{\circ}$ K in a desired ratio of  $CO_2/H_2$  until equilibrium was attained between the gas and the solid phases. The equilibrated sample was guenched to the temperature of cold water. The detailed techniques are just the same as those described previously (10).

Total composition of the quenched sample were determined by means of the gravimetric weight-gain method. The sample was completely oxidized to a mixture of  $V_2O_5$  and  $Fe_2O_3$  at 800°C in air for 24–48 hr; vaporization of  $V_2O_5$  was insignificant during heating within the present accuracy.

The  $CO_2/H_2$  gas mixtures were prepared by proportioning the two gas components in a desired ratio by means of the method similar to that used by Darken and Gurry (11). The actual partial pressure of oxygen was measured by the solid electrolyte cell composed of  $(ZrO_2)_{0.85}(CaO)_{0.15}$ . The principle and design of the cell used in the present study are the same as those described by Katsura and Hasegawa (12) and Wakihara and Katsura (13).

A thermogravimetric method was used to determine the rate of approach to an equilibrium state and to determine ranges of oxygen partial pressure and composition in which the spinel solid solution exists in equilibrium. The method was described in previous studies (12, 13).

The phases present in the quenched sample were identified by an X-ray diffraction method using Fe  $K_{\alpha}$  radiation. Silicon powder was used as the standard in determining d values.

## Magnetic Measurements

The magnetization of samples was determined by the Faraday method. The force, the emf of the thermocouple attached on the specimen, and the current intensity of the applied field were automatically recorded by a suitable recording device. The maximum value of the field was approximately 7000 Oe.

Calibration of the magnetization was carried out by using nickel powder with a purity of 99.99%, which has the value of 0.5714  $\mu_{\rm B}$  per atom (14) at 293°K. The error of measured magnetization for each specimen was estimated to be within  $\pm 3$  %. The experimental formula,  $M_h = M_s(1 - \text{const} \cdot H^{-1})$  was used to correct the observed magnetization at 77°K to the saturation magnetization at 77°K.  $M_{\rm h}$  and  $M_{\rm s}$ indicate a moment at any value of H (magnetic field) at  $77^{\circ}$ K and the saturation moment at  $77^{\circ}$ K, respectively. A value of  $M_s$  for each specimen was graphically taken as the intercept on the  $M_h$  axis by extrapolating a value of  $H^{-1}$  to zero (or by choosing a value of H as infinity). No extrapolation to the saturation moment at 0°K was carried out because magnetization curves of FeV<sub>2</sub>O<sub>4</sub>, or those close to that composition, and  $Fe_{1.8}V_{1.2}O_4$  were uncertain in the temperature range from 77° to 0°K, as will be shown in Fig. 3b and Fig. 3c.

Pt-13%Rh and Au·2%Co-Cu thermocouples were used to measure temperatures above and below room temperature, respectively. The variation of temperatures between 77 and 860°K was achieved by use of suitable Dewar vessel and noninductive electric furnace. Temperature calibration was carried out at liquid N<sub>2</sub> temperature and at the freezing point of water for the Au·2%Co-Cu thermocouple; at the Curie temperatures of pure nickel (546°K) and stoichiometric magnetite (851°K) for the Pt-13%Rh·Pt thermocouple. The temperature is correct within an accuracy of  $\pm 5^{\circ}$ K.

#### **Results and Discussion**

The Area of the Spinel Solid Solution in the  $V_2O_3$ -Fe<sub>2</sub>O<sub>3</sub>-FeO System at 1500°K

The area of the spinel solid solution at 1500°K in the  $V_2O_3$ -Fe<sub>2</sub>O<sub>3</sub>-FeO system is given together with the isobaric lines of the oxygen partial pressure in Fig. 1. The figure illustrates the relationship between atomic ratio of 4(Fe + V)/O and compositional parameter x for the general formula of the spinel  $Fe_{1+2x}V_{2-2x}O_4$  ( $0 \le x \le 1$ ). The variation of 4(Fe + V)/O, which is a measure of defect structure of the present spinel, is seen to depend on the value of x. For example, the spinel with x = 0.5 varied its composition from  $(Fe_{2/3}V_{1/3})_3O_4$  to  $(Fe_{2/3}V_{1/3})_{2,965}O_4$ , while  $FeV_2O_4$  was stoichiometric within experimental error.

The isobaric lines of oxygen were concentrated near the stoichiometric spinel solid solution when the partial pressure of oxygen became lower, and a spinel with a stoichiometric composition was decomposed to more reduced phases below a certain oxygen partial pressure. The spinel with a greater metal to oxygen ratio than 3/4 was not found in the present study. These situations are similar to the cases of the spinel solid solutions Fe<sub>2</sub>TiO<sub>4</sub>-Fe<sub>3</sub>O<sub>4</sub> (15) and FeCr<sub>2</sub>O<sub>4</sub>-Fe<sub>3</sub>O<sub>4</sub> (16). The detailed study will be published elsewhere in the near future.

Specimens were prepared in the most suitable oxygen partial pressure under which the spinel



FIG. 1. Area of the spinel solid solution with composition parameter x for the  $Fe_{1+2x}V_{2-2x}O_4$  ( $0 \le x \le 1$ ) at 1500°K. Some curved lines in the area indicate the isobaric lines of oxygen partial pressures.

| <b>FABLE I</b> |  |
|----------------|--|
|----------------|--|

VALUES OF CONSTANTS FOR SOME MEMBERS OF THE FeV2O4-Fe3O4 SYSTEM

| $\mathrm{Fe}_{1+2x}\mathrm{V}_{2-2x}\mathrm{O}_{4}$ |                                                       |                                                    |                                       | Saturation magnetization                 | Curie                 |
|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|---------------------------------------|------------------------------------------|-----------------------|
| Value of x                                          | Compound                                              | - Atmospheric condition<br>$(-\log Po_2 \pm 0.05)$ | Lattice parameter $(a_0(\text{\AA}))$ | in $\mu_{\rm B}$ per formula unit (77°K) | temp. ((°K) $\pm$ 5°) |
| 0                                                   | FeV <sub>2</sub> O <sub>4</sub>                       | 13.08                                              | 8.452 ± 0.001                         | 1.54                                     | 127                   |
| 0.0625                                              | Fe <sub>1.125</sub> V <sub>1.875</sub> O <sub>4</sub> | 12.03                                              | $\textbf{8.450} \pm \textbf{0.002}$   | 1.49                                     | 121                   |
| 0.1                                                 | $Fe_{1,2}V_{1,8}O_{4}$                                | 11.90                                              | $8.450 \pm 0.002$                     | 1.39                                     | 132                   |
| 0.175                                               | $Fe_{1.35}V_{1.65}O_4$                                | 11.90                                              | $8.450 \pm 0.002$                     | 1.08                                     | 170                   |
| 0.25                                                | $Fe_{1.5}V_{1.5}O_4$                                  | 10.90                                              | $\textbf{8.446} \pm \textbf{0.002}$   | 0.72                                     | 222                   |
| 0.325                                               | $Fe_{1.65}V_{1.35}O_4$                                | 10.90                                              | $8.441 \pm 0.002$                     | 0.294                                    | 295                   |
| 0.3625                                              | $Fe_{1.725}V_{1.275}O_4$                              | 10.90                                              |                                       | 0.142                                    | 333                   |
| 0.4                                                 | $Fe_{1.8}V_{1.2}O_{4}$                                | 10.45                                              | $8.426 \pm 0.002$                     | 0.044                                    | 358                   |
| 0.4375                                              | Fe <sub>1.875</sub> V <sub>1.125</sub> O <sub>4</sub> | 10.45                                              |                                       | 0.253                                    |                       |
| 0.475                                               | $Fe_{1.95}V_{1.05}O_4$                                | 10.15                                              |                                       | 0.50                                     | 432                   |
| 0.5                                                 | Fe <sub>2</sub> VO <sub>4</sub>                       | 9.72                                               | $\textbf{8.418} \pm \textbf{0.002}$   | 0.73                                     | 454                   |
| 0.55                                                | $Fe_{2,1}V_{0,9}O_4$                                  | 9.72                                               | _                                     | 0.98                                     | 516                   |
| 0.625                                               | Fe <sub>2.25</sub> VO <sub>3.75</sub> O <sub>4</sub>  | 9.72                                               | $8.408 \pm 0.002$                     | 1.40                                     | 566                   |
| 0.7                                                 | $Fe_{2,4}V_{0,6}O_{4}$                                | 9.17                                               | $8.407 \pm 0.002$                     | 2.02                                     | 621                   |
| 0.775                                               | Fe <sub>2.55</sub> V <sub>0.45</sub> O <sub>4</sub>   | 8.89                                               | $\textbf{8.401} \pm \textbf{0.001}$   | 2.34                                     | 698                   |
| 0.8125                                              | Fe <sub>2.625</sub> V <sub>0.375</sub> O <sub>4</sub> | 8.89                                               | _                                     | 2.85                                     | _                     |
| 0.85                                                | $Fe_{2.7}V_{0.3}O_{4}$                                | 8.89                                               | $\textbf{8.399} \pm \textbf{0.002}$   | 3.05                                     | 738                   |
| 0.8875                                              | Fe <sub>2.775</sub> V <sub>0.225</sub> O <sub>4</sub> | 8.89                                               | $\textbf{8.396} \pm \textbf{0.001}$   | 3.19                                     |                       |
| 0.925                                               | $Fe_{2.85}V_{0.15}O_4$                                | 8.50                                               | $\textbf{8.395} \pm \textbf{0.002}$   | 3.42                                     | 814                   |
| 1.0                                                 | Fe <sub>3</sub> O <sub>4</sub>                        | 8.10                                               | $\textbf{8.394} \pm \textbf{0.002}$   | 4.03                                     | 851                   |

existed in the stoichiometric composition in equilibrium state at 1500°K. The values of oxygen partial pressure are listed in Table I.

## Lattice Parameters

Lattice parameters for the present spinels are given in Table I and shown in Fig. 2. The relation between lattice parameters and compositions devi-



FIG. 2. Relationship between lattice parameter and composition parameter x for the system  $Fe_{1+2x}V_{2-2x}O_4$  ( $0 \le x \le 1$ ).

ates considerably from Vegard's law. In the range  $0 \le x \le 0.5$ , they are in good agreement with those of Rogers et al. (8) and Rossiter (9). In the range  $0.5 \le x \le 1$ , however, the parameter decreases with a gentler slope than in the range  $0 \le x \le 0.5$ , and the results are slightly different from the work by Vorob'ev et al. (2).

#### Magnetic Properties

The magnetizations of a number of spinels were measured between 77°K and their Curie temperatures. Typical examples of magnetization versus temperature are shown in Fig. 3a,b,c. In Fig. 3a, the magnetizations decrease smoothly with increase of temperature. Similar temperature dependence of magnetization was observed for the compositional range  $0.44 \le x \le 1$ . In the Fe<sub>2</sub>VO<sub>4</sub> (x = 0.5), the curve agrees well with that examined by Bernier and Poix (7) in a field of 26 000 Oe and down to  $40^{\circ}$ K. The magnetization for the specimen of  $Fe_{1,8}V_{1,2}O_4$ (x = 0.4) is shown in Fig. 3b. The curve shows complex behavior. This composition,  $Fe_{1,8}V_{1,2}O_4$ , also corresponds to the minimum value of the magnetic moment (0.044  $\mu_{\rm B}$ ) at 77°K, as will be illustrated in Fig. 5 and tabulated in Table I.



FIG. 3a, b, c. Magnetization curves with temperature for several compositions of spinels taken the magnetization at  $77^{\circ}$ K as a reference.

Similar J(T) curves were observed in the specimens within  $0.33 \le x \le 0.4$ . One of the curves,  $Fe_{1.65}V_{1.35}O_4 (x = 0.325)$ , is shown in Fig. 3c. In the specimens within  $0 \le x \le 0.25$ , the variations of magnetization are similar to those of examples,  $Fe_{1.5}V_{1.5}O_4 (x = 0.25)$  and  $FeV_2O_4 (x = 0)$ , shown in Fig. 3c. In those specimens, the Curie tempera-



FIG. 4. The Curie temperature vs composition parameter x for the system  $Fe_{1+2x}V_{2-2x}O_4$ .

tures are too low to evaluate the value of the saturation magnetization at 0°K from the data obtained above 77°K. Therefore, in these compositional ranges, the measurement of magnetization between liquid helium temperature and the Curie temperature seems to be necessary to ensure the saturation magnetization.

The Curie points for the present solid solution are illustrated in Fig. 4 and Table I. As seen in Fig. 4, the Curie points increase almost linearly with x for the system  $Fe_{1+2x}V_{2-2x}O_4$  in the range from 0.1 to 1, while they are almost constant in the vicinity of  $FeV_2O_4$ . The Curie points of  $FeV_2O_4$  and  $Fe_2VO_4$ are 127 and 454°K, respectively. These values are slightly higher than the data obtained by Wold et al. (6).

Figure 5 illustrates the relationship between the corrected saturation moment in  $\mu_B$  per formula unit at 77°K and x ( $0 \le x \le 1$ ) for the system Fe<sub>1+2x</sub>V<sub>2-2x</sub>O<sub>4</sub>. The values of saturation moments are also tabulated in Table I. The magnetic moment decreases almost linearly with decrease of x and becomes almost zero at the composition, Fe<sub>1.8</sub>V<sub>1.2</sub>O<sub>4</sub>; it then increases again toward FeV<sub>2</sub>O<sub>4</sub>.

In order to consider the cation distributions and the magnetic structure of the system  $Fe_{1+2x}V_{2-2x}O_4$ without difficulty, let us divide it into two parts, the subsystems  $Fe_2VO_4$ - $Fe_3O_4$  and  $FeV_2O_4$ - $Fe_2VO_4$ .

Magnetite,  $Fe_3O_4$ , is well known to be an inverse spinel with ferrous iron in octahedral sites (5). Five



FIG. 5. Relationship between corrected saturation moments in  $\mu_B$  (Bohr magnetons) per molecule at 77°K and composition parameter  $\mu$  ( $0 \le \mu \le 1$ ) and  $\lambda$  ( $0 \le \lambda \le 1$ ) according to the models of Fe<sup>3+</sup>(Fe<sup>2+</sup>Fe<sup>3+</sup><sub>4</sub>V<sup>3+</sup><sub>1- $\mu$ </sub>)O<sub>4</sub> and Fe<sup>3+</sup><sub>4</sub>Fe<sup>2+</sup><sub>1- $\lambda$ </sub>(Fe<sup>2+</sup><sub>4</sub>V<sup>3+</sup><sub>1- $\lambda</sub>)O<sub>4</sub>,$  $respectively. (n<sub>B</sub> reads <math>\mu_B$ )</sub>

models of cation distributions for  $Fe_2VO_4-Fe_3O_4$ solid solution series may be possible as illustrated in Table II, where outside and inside ions of the parenthesis denote ions occupying A (tetrahedral) and B (octahedral) sites, respectively. Mu is the composition parameter, and varies from 0 to 1. The values of magnetic moment  $Fe^{2+}$ ,  $Fe^{3+}$ , and  $V^{4+}$  ions are, assuming spin only values, 4.0, 5.0, and 1.0  $\mu_B$ per ion, respectively. Goodenough (17) has given

## TABLE II

Possible Cation Distributions for the  $FeV_2O_4-Fe_3O_4$  and Equations to Calculate Magnetic Moments per Molecule when  $Fe^{3+}$ ,  $Fe^{2+}$ ,  $V^{4+}$  and  $V^{3+}$  are Given 5.0, 4.0, 1.0, and 1.4  $\mu_B$ , Respectively;  $\mu$  Changes in the Range  $0 \le \mu \le 1$  and  $S_a$  and  $S_b$  Indicate the Moments for A Site and B Site Respectively

| Model |                                                                                                                                                            |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | $ \begin{array}{l} \mathbf{V_{1-\mu}^{4+}Fe_{\mu}^{3+}(Fe^{2+}Fe_{1-\mu}^{2+}Fe_{\mu}^{3+})O_{4}} \\ X=S_{b}-S_{a}=-3.0\times\mu+7.0 \end{array} $         |
| 2     | $Fe_{1-\mu}^{2+}Fe_{\mu}^{3+}(Fe^{2+}Fe_{\mu}^{3+}V_{1-\mu}^{4+})O_{4}$ $X = S_{b} - S_{a} = 3.0 \times \mu + 1.0$                                         |
| 3     | Fe <sup>3+</sup> (Fe <sup>2+</sup> Fe <sup>3+</sup> <sub><math>\mu</math></sub> )O <sub>4</sub><br>X = S <sub>b</sub> - S <sub>a</sub> = 3.6 × $\mu$ + 0.4 |
| 4     | $Fe_{\mu}^{3+}V_{1-\mu}^{3+}(Fe^{2+}Fe^{3+})O_{4}$<br>$X = S_{b} - S_{a} = -3.6 \times \mu + 7.6$                                                          |
| 5     | $Fe_{1-\mu}^{2+}Fe_{\mu}^{3+}(Fe^{3+}Fe_{\mu}^{2+}V_{1-\mu}^{3+})O_{4}$ $X = S_{b} - S_{a} = 1.6 \times \mu + 2.4$                                         |

1.40  $\mu_{\rm B}$  per ion for the magnetic moment of V<sup>3+</sup> ions at B site. An equation to calculate magnetic moments for the solid solution Fe<sub>2</sub>VO<sub>4</sub>-Fe<sub>3</sub>O<sub>4</sub> is easily derived from the difference of the moments between A and B sites by assuming antiparallel coupling of sublattice moments between A and B sites and by using the moments for each ion as described above. Equations of magnetic moments for each of five models are also illustrated in Table II, where S<sub>a</sub> and S<sub>b</sub> represent magnetic moments of A site and B site, respectively. The calculated moments using models of 1, 4, and 5 markedly deviate from the measured moments. On the other hand, the calculated moments using equations for models of 2 and 3 are in reasonable agreement with observed ones.

 $FeV_2O_4$  is known from X-ray diffraction results to be normal with ferrous iron in tetrahedral sites (4). Hence, two cation distributions for  $FeV_2O_4$ - $Fe_2VO_4$ solid solution are possible as the results of the above suitable models, 2 and 3.

$$Fe^{2+}(V^{3+}V^{3+})O_4$$
— $Fe^{2+}(Fe^{2+}V^{4+})O_4$ , (a)

$$Fe^{2+}(V^{3+}V^{3+})O_4 - Fe^{3+}(Fe^{2+}V^{3+})O_4.$$
 (b)

The general formula for the cation distribution of (a) can be written as  $Fe^{2+}(V_{2-2\lambda}^{3+}Fe_{\lambda}^{2+}V_{\lambda}^{4+})O_4$  $(0 \le \lambda \le 1)$ . The equation of magnetic moments on this model is evaluated from the following equation;

$$Y = |S_b - S_a| = |2.2\lambda - 1.2|; \quad (0 \le \lambda \le 1), \quad (1)$$

where  $S_a$  and  $S_b$  represent magnetic moments on A and B sites, respectively. Lambda is the compositional parameter varying from 0 to 1. Similarly, the model for cation distributions of (b) can be written as  $Fe_{\lambda}^{3+}Fe_{1-\lambda}^{2+}(Fe_{\lambda}^{2+}V_{2-\lambda}^{3+})O_4$ . The equation to calculate moments on this model is given by follows;

$$Y = |S_b - S_a| = |1.6\lambda - 1.2|; \quad (0 \le \lambda \le 1). \quad (2)$$

Equation (2) agrees better with the observed moments than Eq. (1) as shown in Fig. 5 where the data points are taken from Table I. In the vicinity of Fe<sub>2</sub>VO<sub>4</sub>, lattice parameters, the Curie points and magnetic moments vary continuously with x as shown in Figs. 2, 4, and 5. Therefore, we can not consider remarkedly different cation distributions on either side of  $Fe_2VO_4$ . Also, the lattice parameters begin to increase rapidly when compositional parameter x becomes smaller than 0.5. This may be consistent with the assumption of model (b) that  $Fe^{2+}$  ions replace  $Fe^{3+}$  in A sites. Thus, we may conclude that the cation distributions of  $Fe^{3+}(Fe^{2+}Fe^{3+}_{\mu}V^{3+}_{1-\mu})O_4$  and  $Fe^{3+}_{\lambda}Fe^{2+}_{1-\lambda}(Fe^{2+}_{\lambda}V^{3+}_{2-\lambda})O_4$  are suitable for  $Fe_2VO_4$ -Fe\_3O\_4 and  $FeV_2O_4$ -Fe\_2VO\_4 subsystems, respectively. As a result, it should be noted that both  $Fe^{2+}$  and  $V^{3+}$  ions prefer B sites to A

sites through all the system of  $Fe_{1+2x}V_{2-2x}O_4$  $(0 \le x \le 1)$ . The equation of model 2 in Table II and Eq. (2) are indicated by a solid line X and a folded line Y, respectively, in Fig. 5. The measured saturation moments for the FeV<sub>2</sub>O<sub>4</sub>-Fe<sub>2</sub>VO<sub>4</sub> solid solution indicate a significant deviation from the folded line Y in the compositional range  $FeV_2O_4$ - $Fe_{1,5}V_{1,5}O_4$ . The disagreement between the observed and the calculated saturation moments may be partly due to a noncollinear spin configuration in the FeV<sub>2</sub>O<sub>4</sub>-Fe<sub>2</sub>VO<sub>4</sub> spinel solid solution series and partly due to uncertainty of the corrected saturation moment in the vicinity of FeV<sub>2</sub>O<sub>4</sub>. Indeed, Menyuk et al. (18) and Dwight et al. (19) studied the magnetic properties of the normal cubic spinels MnV<sub>2</sub>O<sub>4</sub> and  $CoV_2O_4$ , and recognized that these spinels have not a Néel type configuration at low temperature  $(4.2^{\circ}K)$ . They also mentioned that the effect is attributed to the importance of orbital degeneracy and spin-orbit coupling in connection with V3+ ions.

Rossiter (9) proposed the model  $Fe^{2+}(Fe_{\lambda}^{3+}V_{2-\lambda}^{3+})O_{4}$ ( $0 \le \lambda \le 1$ ) for the  $FeV_2O_4$ - $Fe_2VO_4$  solid solution series based on his Mössbauer spectra study. However, the corresponding equation,  $Y = |S_b - S_a| =$  $|3.6\lambda - 1.2|$ , which assumes ferrimagnetic coupling, deviates extremely from our data. Bernier and Poix (7) proposed  $Fe^{3+}(Fe^{2+}V^{3+})O_4$  for the  $Fe_2VO_4$ based on the structural and magnetic properties of this compound. Their conclusion is consistent with our study in the composition of  $Fe_2VO_4$ .

Thus, it seems that in the  $FeV_2O_4$ - $Fe_3O_4$  solid solution system, Néel's ferrimagnetic AB coupling is sufficiently large to keep linear spin configuration if  $Fe^{2+}$  ions occupy half of the B site, but the AB coupling becomes weak and in turn BB coupling becomes compatible with it if V<sup>3+</sup> ions occupy more than half of the B sites.

#### Acknowledgments

The authors wish to thank Professor Syun-iti Akimoto and Dr. Yasuhiko Syono, University of Tokyo, for many useful discussion and suggestions during this work.

#### References

- 1. A. BURDESE, Ann. Chim. (Rome) 47, 817 (1957).
- YU. P. VORB'EV, V. N. BOGOSLOVSKII, E. G. BOGACHOVA, AND G. I. CHUFAROV, *Dokl. Akad. Nauk SSSR* 166, 664 (1966).
- 3. N. G. SCHMAHL AND H. DILLENBRUG, Z. Phys. Chem. 65, 119 (1969).
- 4. H. M. RICHARDSON, F. BALL, AND G. R. RIGBY, *Trans.* Brit. Ceram. Soc. **50**, 376 (1954).
- 5. E. J. W. VERWEY AND E. L. HEILMANN, J. Chem. Phys. 15, 174 (1947).
- A. WOLD, D. ROGERS, R. J. ARNOTT, AND N. MENYUK, J. Appl. Phys. 33, 1208 (1962).
- 7. J. C. BERNIER AND P. POIX, Ann. Chim. 2, 81 (1967).
- D. B. ROGERS, R. J. ARNOTT, A. WOLD, AND J. B. GOODENOUGH, J. Phys. Chem. Solids 24, 347 (1963).
- 9. M. J. ROSSITER, J. Phys. Chem. Solids 26, 775 (1965).
- T. KATSURA AND S. KIMURA, Bull. Chem. Soc. Jap. 38, 1664 (1965).
- L. S. DARKEN AND R. W. GURRY, J. Amer. Chem. Soc. 67, 1398 (1945).
- 12. T. KATSURA AND M. HASEGAWA, Bull. Chem. Soc. Jap. 40, 561 (1967).
- 13. M. WAKIHARA AND T. KATSURA, Met. Trans. 1, 363 (1970).
- 14. E. C. STONER, "Magnetism and Matter," pp. 383, 384, Methuen, London, 1934.
- 15. R. W. TAYLOR, Amer. Mineral. 49, 1016 (1964).
- 16. T. KATSURA AND A. MUAN, Trans. AIME 230, 77 (1964).
- 17. J. B. GOODENOUGH, "Magnetism and the Chemical Bond," pp. 193–202, Wiley, New York, 1966.
- N. MENYUK, A. WOLD, D. ROGERS, AND K. DWIGHT, J. Appl. Phys. 33, 1144 (1962).
- K. DWIGHT, N. MENYUK, D. B. ROGERS, AND A. WOLD, "Proceedings of the International Conference on Magnetism," Nuttingham, September 1964.